Conditions for CET in a gamma TiAl alloy

نویسندگان

  • R P Mooney
  • J Lapin
  • S McFadden
چکیده

The solidification of gamma TiAl alloys is of interest to the aerospace and automotive industries. A gamma TiAl multicomponent alloy: Ti–45.5Al–4.7Nb–0.2C–0.2B (at. %) has been the focus of a study to investigate the solidification conditions that led to a Columnar to Equiaxed Transition (CET) in a directional solidification experiment where traditional Bridgman solidification was combined in series with the power down method. In this paper, a numerical modelling result (a locus plot of columnar growth rate and temperature gradient) from this experiment is superimposed onto CET maps generated using an established analytical model for CET from the literature. A parametric study is carried out over suitable ranges of nucleation undercooling and nuclei density values. The predicted CET positions are compared with the experimentally measured CET position. Reasonable agreement is found at low levels of nuclei density. The paper concludes with estimates for the solidification conditions (nuclei density and nucleation undercooling) that led to the CET.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of Nanostructure Ti-45Al-5Cr Alloy by Mechanical Alloying and Study the Effect of Cr Addition on Microstructure of TiAl Alloy

In this work, mechanical alloying was employed to produce Ti-50Al and Ti-45Al-5Cr (at%) alloys. Alloying was performed in a planetary mill and the alloying time varying from 5 to 70h. Characterization of the powder mixture was performed by X-ray diffraction (XRD), SEM analyses and DTA test, during mechanical alloying and after annealing at 1100°c in vacuum oven. The results showed, after 50h of...

متن کامل

Electrochemical Corrosion of Oxidized Gamma Titanium Aluminide in Ringer's Solution

    Y-TiAl intermetallic alloy have a good potential for use as biomaterial, due to its good corrosion resistance. In this paper, two fundamental electrochemical techniques namely electrochemical impedance spectroscopy and potentiodynamic anodic polarization were used to evaluate the corrosion performance of g-TiAl in Ringer's solution. Surface modification treatments were employed with the pur...

متن کامل

Studying the Effect of Productive Factors on Synthesis of Anostructure Tial (Γ) Alloy By Mechanical Alloying

In this research, the Planetary mill was used for mechanical alloying (MA) of Ti and Alpowder mixture with equal at% (Ti50Al50). The effect of various factors, such as process control agent(PCA), speed of rotation of vial and ball-to-powder weight ratio, on process were studied and the bestcondition to synthesis the alloy was determined. Study on X-ray diffraction (XRD) patterns showedthat at p...

متن کامل

Influence of impact speed on water droplet erosion of TiAl compared with Ti6Al4V

Water Droplet Erosion (WDE) as a material degradation phenomenon has been a concern in power generation industries for decades. Steam turbine blades and the compressor blades of gas turbines that use water injection usually suffer from WDE. The present work focuses on studying erosion resistance of TiAl as a potential alloy for turbine blades compared to Ti6Al4V, a frequently used blade alloy. ...

متن کامل

Development of Oxidation Protection Coatings for Gamma Titanium Aluminide Alloys

Metallic material systems play a key role in meeting the stringent weight and durability requirements for reusable launch vehicle (RLV) airframe hot structures. Gamma titanium aluminides (γTiAl) have been identified as high-payoff materials for high-temperature applications. The low density and good elevated temperature mechanical properties of γ-TiAl alloys make them attractive candidates for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015